On the Explicit Formula of Euler Numbers and Polynomials of Higher Order

نویسندگان

  • Taekyun Kim
  • T. KIM
چکیده

In [1], the multiple Frobenius-Euler numbers and polynomials were constructed. In this paper we give some interesting formulae which are related to the multiple Frobenius-Euler polynomials. The main purpose of this paper is to give the Kummer type congruences for the multiple Frobenius-Euler numbers. §

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On composition of generating functions

In this work we study numbers and polynomials generated by two type of composition of generating functions and get their explicit formulae. Furthermore we state an improvementof the composita formulae's given in [6] and [3], using the new composita formula's we construct a variety of combinatorics identities. This study go alone to dene new family of generalized Bernoulli polynomials which incl...

متن کامل

Viewing Some Ordinary Differential Equations from the Angle of Derivative Polynomials

In the paper, the authors view some ordinary differential equations and their solutions from the angle of (the generalized) derivative polynomials and simplify some known identities for the Bernoulli numbers and polynomials, the Frobenius-Euler polynomials, the Euler numbers and polynomials, in terms of the Stirling numbers of the first and second kinds.

متن کامل

Note on q-Extensions of Euler Numbers and Polynomials of Higher Order

In [14] Ozden-Simsek-Cangul constructed generating functions of higher-order twisted (h, q)-extension of Euler polynomials and numbers, by using p-adic q-deformed fermionic integral on Zp. By applying their generating functions, they derived the complete sums of products of the twisted (h, q)-extension of Euler polynomials and numbers, see[13, 14]. In this paper we cosider the new q-extension o...

متن کامل

NOTE ON THE GENERALIZATION OF THE HIGHER ORDER q-GENOCCHI NUMBERS AND q-EULER NUMBERS

Cangul-Ozden-Simsek[1] constructed the q-Genocchi numbers of high order using a fermionic p-adic integral on Zp, and gave Witt’s formula and the interpolation functions of these numbers. In this paper, we present the generalization of the higher order q-Euler numbers and q-Genocchi numbers of Cangul-Ozden-Simsek. We define q-extensions of w-Euler numbers and polynomials, and w-Genocchi numbers ...

متن کامل

Apostol-euler Polynomials of Higher Order and Gaussian Hypergeometric Functions

The purpose of this paper is to give analogous definitions of Apostol type (see T. M. Apostol [Pacific J. Math. 1 (1951), 161-167]) for the so-called Apostol-Euler numbers and polynomials of higher order. We establish their elementary properties, obtain several explicit formulas involving the Gaussian hypergeometric function and the Stirling numbers of the second kind, and deduce their special ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005